

3.7 examples

Calculus AB, section 3.7 (Chain Rule)

Example 1

Calculate the derivative of $y = \sqrt{x^3 + 1}$

Example 2

Calculate $\frac{dy}{dx}$ for: a. $y = \cos(x^2)$

b.
$$y = \tan \frac{x}{x+1}$$

$$\frac{dy}{dx} = \int ec^2 \left(\frac{x}{x+1}\right) \cdot \left(\frac{x+1-x}{(x+1)^2}\right)$$
$$= \int ec^2 \left(\frac{x}{x+1}\right) \cdot \left(\frac{x}{x+1}\right) - \frac{1}{(x+1)^2}$$

Example 3

 $V = \frac{4}{3} \pi r^3 \qquad \text{No.'29, 30, 37, 36, 37}$ Imagine a sphere whose radius r increases at a rate of 3 cm/s. At what rate is the volume V of the sphere increasing when r = 10 cm?

$$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt} \qquad t \rightarrow r \rightarrow V$$

$$= t\pi r \cdot 3$$

$$= 4 \cdot \pi \cdot 100 \cdot 3 = 1200 \pi \cdot cm^{3}$$

Example 4

Find the derivatives: a. $y = (x^3 + 9x + 2)^{-1/3}$

$$\frac{dy}{dx} = -\frac{1}{3} \left(\frac{3}{x} + 9x + 1 \right)^{-4/3} \left(\frac{3}{3} + \frac{2}{9} + \frac{9}{9} \right)$$

b.
$$y = \sec^4 t = (\sec t)^4$$

$$\frac{dy}{dt} = 4 \sec^3 t \cdot \sec t + \cot t$$

$$4 \sec^4 t + \cot t$$

Example 5

Differentiate: a. $f(x) = e^{9x}$

$$f'(x) = 9e^{9x}$$

b.
$$f(x) = e^{\cos x}$$
 $f'(x) = - finx e^{\cos x}$

Example 6 – Trigonometric Derivatives in Degrees

Calculate the derivative of the sine function as a function of degrees rather than radians. $\underline{n} \times \underline{r} \times$

$$\frac{J_{1}}{J_{2}} \times = J_{1} \left(\frac{1}{100} \cdot X \right)$$

$$\frac{J_{2}}{J_{2}} J_{1} \left(\frac{1}{100} \cdot X \right) = cos \left(\frac{1}{100} X \right) \cdot \frac{1}{100}$$

$$\frac{cos}{J_{2}} \left(X \right) \cdot \frac{1}{100}$$

$$\frac{J_{2}}{J_{2}} J_{2} \left(X \right) \cdot \frac{1}{100}$$

$$\frac{J_{2}}{J_{2}} J_{2} \left(X \right) \cdot \frac{1}{100}$$

Example 7

Find the derivative of
$$y = \sqrt{x + \sqrt{x^2 + 1}} = \left(\times + \left(\times \right)^{1/2} \right)$$

$$\frac{dy}{dx} = \frac{1}{2} \left(\times + \left(\times \right)^{1/2} \right) \cdot \left(1 + \frac{1}{2} \left(\times + 1 \right)^{1/2} \cdot 2x \right)$$

f(x) is the curve below. g(x) has straight line segments.

0.5

1.5

X	1	3	5
f(x)	4	0	3
f'(x)	2	-1	1
g(x)	3	2	5
g'(x)	1	4	2
1)	x 25 36	40 43 XX I	7 54 55

Find:

$$\frac{d}{dx}\sin(g(x)) \text{ at } x = 3$$

$$= (\cos 2) \cdot 4$$

$$= (\cos 2) \cdot 4$$

$$\frac{d}{dx} f(g(x)) \text{ at } x = 5$$

$$\frac{d}{dx}f(x^2) \text{ at } x = 1$$

Tuesday, October 16 dis 12:45 PM orthide (In Side) = orther (in Side).

In Side

$$\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) = -\sin \left(\frac{3}{\sqrt{2}} \right) = -\cos \left(\frac{3}{\sqrt{2}} \right$$

 $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dy}{dx}$