

6.3 examples (1)

Calculus AB: Volumes of Revolution (section 6.3)

Example 1

Calculate the volume V of the solid obtained by rotating the region under $y = x^2$ about the x-axis for $0 \le x \le 2$.

395

Example 2 – Rotating the Area Between Two Curves Find the volume V of the solid obtained by rotating the region between $y = x^2 + 4$ and y = 2 about the x-axis for $1 \le x \le 3$.

$$\pi \int f(x)^{2} - g(x)^{2} dx$$

$$\pi \int (x^{2} + 4)^{2} - x^{2} dx$$

$$= 141 \quad 73737$$

Example 3 – Revolving About a Horizontal Axis

Find the volume V of the "wedding band" in Figure 7(C), obtained by rotating the region between the graphs of $f(x) = x^2 + 2$ and $g(x) = 4 - x^2$

about the horizontal line y = -3.

Example 4

Find the volume V of the solid obtained by rotating the region between the graph of $f(x) = 9 - x^2$ and the line y = 12 for $0 \le x \le 3$ about (a) the line

$$R = 12 - (9 - x^{2})$$

$$= 3 + x^{2}$$

$$= (3 + x^{2})^{2} dx$$

$$= 6 + x^{2}$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

$$= 7$$

Example 5 – Revolving About a Vertical Axis

Find the volume of the solid obtained by revolving the region under the graph of $f(x) = 9 - x^2$ for $0 \le x \le 3$ about the vertical axis x = -2.

Monday, January 7, 2019 $TT \int \left(-x^2 dx - T \left(x - \frac{1}{3}x^3\right)\right),$ $T\left(\left[-\frac{1}{3}-\left(-1--\frac{1}{3}\right)\right]=T\left(\frac{2}{3}-\left(-\frac{2}{3}\right)\right)$